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ABSTRACT

Dynamic pruning strategies permit efficient retrieval by not
fully scoring all postings of the documents matching a query
— without degrading the retrieval effectiveness of the top-
ranked results. However, the amount of pruning achievable
for a query can vary, resulting in queries taking different
amounts of time to execute. Knowing in advance the exe-
cution time of queries would permit the exploitation of on-
line algorithms to schedule queries across replicated servers
in order to minimise the average query waiting and com-
pletion times. In this work, we investigate the impact of
dynamic pruning strategies on query response times, and
propose a framework for predicting the efficiency of a query.
Within this framework, we analyse the accuracy of several
query efficiency predictors across 10,000 queries submitted
to in-memory inverted indices of a 50-million-document Web
crawl. Our results show that combining multiple efficiency
predictors with regression can accurately predict the res-
ponse time of a query before it is executed. Moreover, using
the efficiency predictors to facilitate online scheduling algo-
rithms can result in a 22% reduction in the mean waiting
time experienced by queries before execution, and a 7% re-
duction in the mean completion time experienced by users.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage & Retrieval]: Information Search & Retrieval

Keywords:

1. INTRODUCTION

Large-scale information retrieval (IR) systems — such as
Web search engines — are not just concerned with the quality
of search results (also known as effectiveness), but also with
the speed with which the results are obtained (efficiency).
These aspects form a natural tradeoff, in that many ap-
proaches that increase effectiveness may have a correspond-
ing impact on efficiency due to their complex nature [31].

Hence, as users exhibit preferences for faster search en-
gines [6], to deploy techniques to improve effectiveness, search
engines need to identify other opportunities for efficiency op-
timisations. One such technique is the use of caching, either
of the search results for a query, or the posting lists of terms
from the inverted index [3]. Increasingly, caching is being
used for the posting lists of all terms, such that retrieval
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occurs from in-memory indices, and thus all expensive disk
I/0O operations are avoided [12, 15].

The exhaustive scoring of every document that contains
at least one query term also degrades efficiency unnecessar-
ily, because very few of these documents will make the top
retrieved set of documents that the user will see. Dynamic
pruning strategies such as MaxScore [30] and Wand [5]
address this by omitting (pruning) the scoring of documents
that cannot make the top-K retrieved documents set.

Of course, more than one machine is typically involved
in answering a query to a Web search engine [7, 12]. For
instance, more than one query server can service queries for
a replicated index, thereby improving overall response time.
However, no previous work has examined the most effective
way to schedule queries across the query servers. In this
paper, we argue that scheduling algorithms that take into
account the queued workload for that server can be used to
ensure efficient use of query servers resources.

However, accurate scheduling requires estimations of the
execution times of queries. Yet, as we will show in this pa-
per, one query may take substantially longer than another
query with apparently similar statistics. Indeed, we explain
why some queries are difficult to prune, whereby many doc-
uments are fully scored before later being expelled from the
retrieved set by other documents. Hence, the difficulty is
determined by how early the final top documents are re-
trieved when traversing the posting lists, to allow successful
pruning. Accurately estimating this difficulty and hence the
response time of a query will permit the efficient scheduling
of queries in a replicated setting.

In this paper we propose a framework of query efficiency
predictors that can estimate the execution time of a given
query. Experiments using 10,000 queries from a Web search
engine query log demonstrate the accuracy of these predic-
tors. Moreover, we show how query efficiency prediction
can be used to reduce query response time by the improved
scheduling of queries across replicated query servers. In-
deed, scheduling while making use of efficiency predictions
can result in a 22% reduction in the average waiting time
experienced by queries, and a 7% reduction in the average
query completion time experienced by users.

The remainder of this paper is as follows: Section 2 intro-
duces background material on efficient search engines; Sec-
tion 3 details the contributions of this work; Section 4 con-
tains the experimental setup common to all experiments;
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strategies; Section 6 defines our query efficiency prediction
framework; Section 7 shows how query efficiency predictors
can be used to improve the scheduling of queries to repli-
cated query servers; Concluding remarks follow in Section 8.



2. BACKGROUND

To spread the retrieval load of a large document corpus
on a search engine, the inverted index can be partitioned
into shards and distributed across multiple query servers,
and/or identical indices replicated across query servers [12].
For distributed settings, queries arriving at the front-end
server or broker are sent to multiple query servers, while the
broker collates the results. For replicated settings, queries
arriving at the broker are routed to the next available query
server [7]. However, we know of no work that discusses dif-
ferent approaches for the routing or scheduling of queries
across replicated query servers. Indeed, to the best of our
knowledge, this is the first work addressing the scheduling
of queries across replicated query servers.

Next, while the inverted index was traditionally stored on
disk, with the predominance of inexpensive memory, search
engines are increasingly caching the entire inverted index in
memory, to assure low latency responses [12, 15].

Despite these optimisations, the matching of documents
still uses the classical inverted index data structure to score
and rank documents [12]. Moreover, due to its data bound
nature, this represents the largest contribution to the time
for a search engine to retrieve documents in response to a
query. Indeed, to create a ranking of documents for a query,
the posting lists for each query term must be traversed [23].

Various techniques that prune documents that are un-
likely to be retrieved have been devised to improve efficiency.
Some rely on pre-sorting the posting lists of different terms
by the impact of the postings [2], or by removing documents
that are unlikely to be retrieved (with possible loss of re-
trieval effectiveness) [4]. However, we focus on techniques
that are safe-to-rank-K —1i.e. cannot degrade retrieval effec-
tiveness to a given rank K — and use docid sorted posting
lists, as deployed by at least one major search engine [12].
In particular, dynamic pruning strategies aim to avoid the
scoring of postings for documents that cannot make the top
K retrieved set. All state-of-the-art safe dynamic pruning
strategies [5, 28, 30]1 aim to avoid scoring parts of the post-
ing lists, to save disk access, decompression and score com-
putation costs. This is implemented by maintaining addi-
tional information during retrieval, namely: a threshold !,
which is the minimum score that documents must achieve
to have a chance to be present in the final top K results;
and for each query term, a term upper bound " (t), which
is the maximal contribution of that particular term to any
document score. The upper bound is usually obtained by
pre-scanning the posting lists of each term at indexing time,
to record the maximum score found in each posting list [10].

We use two such dynamic pruning strategies that score
postings in a document-at-a-time (DAAT) manner, namely
MaxScore [30] and Wand [5]. Compared to the scoring of
every posting of every document (which we refer to as Full),
both strategies can efficiently score documents while being-
safe-to-rank K, and do not require impact-sorted posting
lists. Instead, the postings for every term have the same
global ordering, such that they can be read in parallel.

MaxScore achieves efficient retrieval by omitting the scor-
ing of postings for documents that will not make the final
retrieved set. In contrast, Wand takes a different approach,
by repeatedly calculating a pivot term. The next document

We omit the database-focused algorithms of Fagin et al. [14]
- these assume random access on the posting list, which is
generally not possible when compression is used.

containing the pivot term is the pivot document, which will
be the next document to be fully scored. A major benefit
of Wand over MaxScore is that skipping [24] forward in
posting lists can be used by Wand , which reduces posting
list decompression overheads, and can reduce 10, with re-
sulting improvements in efficiency [15, 22]. Indeed, Wand
represents the state-of-the-art in dynamic pruning. More-
over, both MaxScore and Wand can equally be applied to
inverted indices stored on disk or in-memory [15].

Moffat et al. [23] stated that the response time of a query
is related to the posting list lengths of its constituent query
terms. However, as we will show in Section 5, dynamic prun-
ing causes queries with similar surface properties (e.g. query
terms, posting list lengths) to widely vary in the time re-
quired to process. Hence, to have a better estimation of
a query’s response time, we propose a novel framework for
query efficiency prediction. Moreover, we investigate the
advantages of query efficiency prediction when applied to
improved online scheduling of queries to replicated query
servers. The notion of query efficiency prediction first ap-
peared in [29], where initial experiments for disk-based in-
dices showed some promise. In contrast, this work per-
forms a more detailed study into efficiency prediction for in-
memory indices, and uses efficiency prediction for enhancing
replicated retrieval architectures.

We contrast query efficiency prediction with works from
the literature on query performance prediction that have
tried to predict the effectiveness of a query [17], either be-
fore retrieval commences (pre-retrieval prediction) [18], or
by inspecting the scores or contents of retrieved documents
(post-retrieval prediction) [1, 11]. Performance predictors
have also been combined using machine learning [19, 21].
However, no previous work has attempted the different task
of efficiency prediction. This work defines pre-retrieval ef-
ficiency predictors, and applies these to the scheduling of
queries in a replicated retrieval setting.

3. CONTRIBUTIONS

The major contributions of this paper are:

¥ We demonstrate and explain the varying nature of re-
sponse times for dynamic pruning strategies with in-memory
indices.

¥ We propose a framework for query efficiency prediction,
and instantiate various predictors within that framework.

¥ We conduct experiments to determine the accuracy of the
query efficiency predictors for retrieval with in-memory
indices.

¥ We propose the use of online scheduling algorithms to re-
duce the overall query response time when routing queries
to replicated query servers.

¥ We show how query efficiency predictors can be used within
online scheduling algorithms.

In the following, we firstly introduce the experimental
setup deployed in this paper (Section 4), before experimen-
tally investigating the pruning behaviour of dynamic prun-
ing strategies (Section 5) and then defining and evaluat-
ing the query efficiency predictors (Section 6). The pro-
posed query efficiency predictors are applied to online query
scheduling in Section 7.



Length 1 2 3 4 5 6+ All

Train | 3,888 2,717 1,387 637 185 - | 8,314
Test | 3,387 2,781 1,395 534 181 - | 8,278

Total 6,775 5,498 2,782, 1,171 366 203 | 16,775

Table 1: Breakdown of the query log used in exper-
iments by query length.

4. EXPERIMENTAL SETUP

All of the experiments in the following sections are con-
ducted using a 50 million document corpus called TREC
ClueWeb09 category B. We index this corpus using the Ter-
rier IR platform [26]?, applying Porter’s English stemmer,
and removing standard stopwords. In the posting lists of
the inverted index, docids are encoded using Elias Gamma-
encoded deltas and term frequencies using Elias Unary [13].
Each posting list also includes skip points [24], one every
1,000 postings. The resulting inverted index size is 22GB.

For testing retrieval efficiency, we extract a stream of
user queries from a real search engine log, and measure the
query response time and the number of postings scored when
retrieving with all index data structures loaded in mem-
ory. Experiments are made using a dual quad-core Intel
Xeon 2.6GHz, with 8GB RAM. In particular, we select the
first 16,775 queries of the MSN 2006 query log [9], apply-
ing Porter’s English stemmer and removing standard stop-
words (empty queries are removed). This amounts to 10,000
queries of more than one term (single term queries cannot
be pruned). Table 1 shows the distribution of queries by
length®. Moreover, this sample exhibits the expected power
law distributional of query occurrences: e.g. 1 query occurs
88 times, and 6,279 queries occurred once.

During retrieval, we apply three retrieval strategies: an
exhaustive DAAT Full, where all postings for each document
are exhaustively scored; MaxScore [30]; and Wand [5].
Moreover, as our inverted index is larger than the available
RAM, we discard the posting lists of terms that do not oc-
cur in the 16,775 queries. This is justified as it simulates an
in-memory index environment without having to partition
the index across multiple servers. Hence, while our query
response times may be larger than would suffice for an inter-
active environment, this does not detract from the validity
of the experiments. Documents are ranked for each query
using BM25, with Terrier’s default parameter settings, while
the number of documents retrieved is set to K = 1, 000.

S. ANALYSIS OF RESPONSE TIMES

To predict the efficiency of queries, we must first under-
stand the characteristics of response times given by various
retrieval strategies. While Moffat et al. [23] claimed that
the main components of a query’s response time are related
to the number of terms in the query, and the length of the
term’s posting lists, there is some other anecdotal literature
evidence that the response time of a dynamic pruning strat-
egy can vary widely, even for queries with the same total
number of postings to consider [3]. While Gan & Suel [16]
assumed that the total postings was a sufficiently accurate
estimation for caching decisions, Ozcan et al. [27] instead
used actual response times, due to the variation in response
times. In this section, we fully analyse and explain the vari-
ation in response times of different retrieval strategies. We

’http://terrier.org/

3As there are very few queries with 6 or more terms, we
omit these in the following experiments, and hence they do
not appear in the train and test sets.

also show that the total number of postings does not accu-
rately predict the response times of all pruning strategies.

Figures 1(a)-(d) show the response time distributions for
different query lengths and different strategies, for 10,000
queries with more than one query term. Ideally, most queries
should have small response times — indicated by the highest
frequency of response time being small, i.e. towards the left.

From Figure 1, we can see that different retrieval strate-
gies exhibit different response time distributions. Indeed,
while MaxScore shows only a small improvement w.r.t.
Full, Wand markedly improves the response times for any
query length, as it has the most number of queries with low
response times, despite having to traverse the same posting
lists of the same length as the other strategies. Moreover, a
clear variance in the response times of queries for each strat-
egy can be observed, even across queries of the same length.
This is expected, as different queries have different numbers
of postings that must be traversed.

Yet, due to their pruning behaviour, the number of post-
ings to process does not fully depict the retrieval times of all
pruning strategies. To illustrate this, Figure 2 shows scatter
plots for total postings and response time for Full, Max-
Score and Wand . From Figure 2(a), a strong correlation
between the total number of postings and the query response
times can be observed for Full, independently from the num-
ber of terms in the query. This correlation is explained by
the fact that the strategy scores every posting for each query
term, without any pruning. However, the correlations ob-
served in Figure 2(b) & (c) for the MaxScore and Wand
strategies are weaker. In particular, the response time for
a query with a given number of postings can be markedly
lower than another query with the same number of postings
— for instance, queries with 2 million postings usually take
between 1.8 to 3.2 seconds with MaxScore , and 0.9 to 2.0
seconds for Wand . Hence, the amount of pruning possible
varies between queries, even for those same length and num-
ber of postings. Moreover, as Wand is able to prune some
queries more aggressively than MaxScore | its exhibits less
correlation between total postings and response times.

To explain why different queries vary in their pruning dif-
ficulty, we turn to Figure 3. This shows the distribution of
weighting model scores for two example queries, each with
two query terms occurring in two documents, where the top
K =1 ranked document is required. Vertical arrows denote
the scores of postings, with the upper bound " (t) for each
term represented by a horizontal dashed line. The thresh-
old ! after scoring each document is shown. As this is a
DAAT process, the postings lists of all terms for a query
are processed in parallel. After scoring the first document
in query 1, the threshold (score of the K th retrieved doc-
ument) is | = 7. Hence, for the second document, after
scoring the posting for the first term, MaxScore can as-
sert that each document will not reach the retrieved set, as
score(t1) + " (t2) = 2+ 2 < 7. Hence the posting for the
second query term of that document is pruned (dotted). In
contrast, for query 2, all postings must be considered for the
second document, as the score of the first term’s posting for
that document is not low enough that it cannot be retrieved
- i.e. score(t;) +" (t2) =3+ 3! 6. We say that the query
1 is easier to prune than query 2.

We now quantify the pruning difficulty for both Max-
Score and Wand . In particular, for the 10,000 queries with
more than one query term, we compute the pruning ratio p,
defined as the percentage of total postings for a query that
were actually scored by the dynamic pruning strategy. For
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instance, a value of p = 35% means that 35% of the to-
tal number of postings of the query were actually scored,
while the remaining 65% of the postings were pruned. The
pruning ratios of the 10,000 queries have been bucketed in
buckets with size 1%. The distribution of these results are
reported in Figure 4, for both MaxScore and Wand .

In both cases, a large percentage of queries are not pruned
at all (i.e. p=100%, right extremes of Figure 4) (" 20% for
MaxScore and " 10% for Wand ). On closer inspection,
we find that most of these unpruned queries consist of two
query terms. This pruning difficulty has two main causes.
Firstly, most of these queries have a very small total num-
ber of postings, so it is difficult to process enough of them to
achieve a high enough threshold to start pruning. Alterna-
tively, when the total number of postings is large, one of the

(a) MaxScore

(b) Wand

Figure 4: The bucketed pruning ratios for two dy-
namic pruning strategies using 10,000 queries with
more than one term.

two terms has a very low discriminative power, i.e. a term
with a very low IDF and consequently a very low maximum
score. In this case, the strategy is forced to behave like for
single term queries (where no pruning is possible), where the
single term is the most discriminative (high IDF) one, with
the other just adding some background noise.

Overall, while in Figure 4(a) MaxScore does not exhibit
a strong pruning ability (e.g. the pruning ratio distribu-
tion is evenly distributed among the queries), in Figure 4(b)
Wand performs very well. In fact, most queries have a small
pruning ratio, i.e. less than 30%, which shows that Wand is
often able to score only a small portion of the total number
of scored postings, thereby attaining higher efficiency.

Therefore, due to their pruning nature, we argue that the
total number of postings may not be enough to predict Max-
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Score or Wand ’s scored postings and hence the query re-
sponse time. In fact, Figures 2 (b) & (c) show that, for
the same total number of postings, the query response time
varies markedly, particularly for Wand . Instead, the num-
ber of scored postings is the central statistic to be predicted
that defines the resulting response time. Indeed, Figure 5
shows that, for different query lengths, the number of scored
postings is correlated to the query response times. However,
the pruning ratio or the number of scored postings cannot
be obtained before retrieval commences. We posit that var-
ious statistics of the query terms that are available offline
can be used to predict the response time of a query be-
fore retrieval commences. In the next section, we propose a
framework for query efficiency prediction, and evaluate var-
ious efficiency predictors within this framework. We then
show one novel application of the query efficiency predic-
tion framework, namely the online scheduling of queries to
replicated query servers.

6. PREDICTING QUERY EFFICIENCY

Having an accurate estimate of the efficiency of a query
can be useful to a search engine in many ways. For instance,
in a replicated setting, if the availability of query servers
can be predicted by the broker, then a new query could be
scheduled to the query server expected to be idle soonest.

To be of use, efficiency predictors must be pre-retrieval -
i.e. available before retrieval for a query has commenced,
and easily obtained at retrieval time (similar to some query
performance predictors [18]). Indeed, a post-retrieval effi-
ciency predictor is of no use, as the response time of the
query is known after retrieval has occurred. Hence, our ef-
ficiency predictors are based on the available statistics of
the query terms (frequency, number of postings, IDF etc).
We note that some pre-retrieval query performance predic-
tors (e.g. AvPMI [17]) use the joint probability of a pair of
query terms. However, calculation of the joint probability
requires n-gram language models, or posting list scans. We
avoid such pair statistics, even though some search engines
may record additional posting lists for some phrases [12].

In the remainder of this section, we propose a framework
for query efficiency prediction, and define many predictors
(Section 6.1). These predictors are evaluated compared to
the response times of 10,000 queries (see Section 6.2 for pre-
diction experimental setup), both individually (Section 6.3),
and in combination (Section 6.4).

Term Statistics s(t)
Arithmetic mean score
Geometric mean score
Harmonic mean score
Max score
Approximation of max score [22]
Variance of score
# Postings
# Maxima
# Maxima greater than average score
10.  # Postings with max score
11. # Postings within 5% of max score
12.  # Postings with score within 5% of final threshold
13.  Promotions into K

CHRNDPOUE WD =

14. IDF
Aggregators A()
a. Maximum
b.  Variance
c. Sum

Table 2: All tested term-based e"ciency prediction
statistics and aggregators.

6.1 A Query Efficiency Prediction Framework

As we have shown in Section 5, pruning difficulty varies
between queries, and hence the response time of a query
cannot be directly predicted. Moreover, as it is infeasible to
generate offline features for the universe of possible queries,
we instead use statistics that are computed for each term.
These are then aggregated (e.g. sum, max) across all of the
constituent terms of a query, to form different features for
a given query. In this manner, a query efficiency prediction
feature f;;(Q) is defined by a term-level statistic s;(t) for a
query term t, and an aggregation function A;:

fi;(Q) = Ai({s;(t) # $ Q}) (1)

We use a learning framework to obtain predictions for re-
sponse times given a set of input features. In particular,
we deploy linear regression [8] as our learning framework,
both for single and multiple features. Linear regression has
previously been successfully used for combining query per-
formance predictors [17].

In terms of features, we rely on more than the frequency
counts and IDFs of the query terms that have been tradi-
tionally applied by query performance predictors. In partic-
ular, recall that dynamic pruning strategies require an upper
bound " (t) on the weighting model score for each term. This
is normally identified at indexing time, by scoring the post-
ing lists of all terms [10]. This provides an opportunity to
calculate other term-based statistics, such as the maximum,
mean and standard deviation of the weighting model scores
observed for each posting list, as well the number of docu-
ments that would be inserted into the top K documents set,
if there was only a single query term in that query.

For each term-based statistic, we create several query ef-
ficiency predictors by aggregating using three different sta-
tistical functions: sum, max and variance. The top part
of Table 2 lists all used term statistics, while the bottom
part lists the functions that are used to aggregate the term
statistics into features for a given query. From Table 2, we
highlight some representative term statistics:

Arithmetic, geometric, harmonic score means : Means
of the weighting model scores from the term’s postings.
Max of score: The exact upper bound " (t) of the scores
in the posting list.

Approximation of max score: An approximation of " (t),
using the maximum observed term frequency [22].



# Postings:  The number of postings in a term’s posting
list. The sum of this statistic is the number of postings
scored by Full, and the upper bound on that which can be
scored by dynamic pruning strategies.

# Maxima:  The number of times that the maximum score
occurs. A term that has fewer maxima in the score distri-
bution may be easier to prune.

Promotions into K : If this query term was the only query
term, how many documents containing this term would make
it into the top K retrieved documents. A term with a low
number of promotions probably has its highest scored doc-
uments towards the start of the posting list.

# Postings with score within 5% of the Pnal thresh-

old: This takes into account the number of postings that
attain a score very close to the K th scored document for a
query containing only that term.

IDF: The inverse document frequency of the term. IDF and
other similar statistics are the basis of several query perfor-
mance predictors (e.g. AVICTF [18]).

The proposed statistics and aggregation functions listed
in Table 2 are not exhaustive — while others may exist, for
reasons of brevity, we focus on those listed above. More-
over, while not all predictors are likely to highly correlate
with query response time, in the remainder of this section,
we show that some predictors can be of use within linear
regression, both in isolation, and when combined.

6.2 Prediction Experimental Setup

In the following, we address two research questions:
1. What are the most accurate efficiency prediction features
when used separately in linear regression (Section 6.3)7
2. Can features be combined within linear regression for
increased accuracy (Section 6.4)?

To address these research questions, we use the 10,000
queries with more than one query term (the prediction of
the efficiency of single term queries is trivial as no pruning
takes place). Table 1 provides the distribution of queries
w.r.t. query length. We form training and testing subsets,
by splitting the query sets of each length into two equal sets
chronologically®. The training set will be used to train the
regression models in the following sections, while all results
are reported on the testing set. Accuracy is measured by
the Pearson’s correlation r (%1 & r & 1: 1 is a perfect cor-
respondence; %] is a reversed correspondence) and the Root
Mean Square Error (RMSE) between the predicted and ac-
tual response times (as obtained in Section 4) for all queries.

6.3 Results: Single Predictors

To test the most accurate efficiency predictors based on
single features, we compute the correlation and the RMSE
between the predicted and actual response times on the test
queries, after training on the corresponding training set with
the same query length. The five most accurate efficiency
predictors for each retrieval strategy, and their respective
correlations and RMSE values for various query lengths are
reported in Table 3. Sum # Postings (i.e. total number of
postings) is the baseline prediction feature. Statistically sig-
nificant differences in term of Pearson correlation from this

4Other experiments using 5-fold cross validation gave similar
conclusions.

baseline — according to a Fisher Z-transform — are denoted
with an asterisk (*).

We firstly analyse the results in Table 3 for each retrieval
strategy in turn. For Full, the most accurate efficiency pre-
dictor is the total number of postings (Sum # Postings), as
each posting is scored. Some other predictors, namely Sum
# Maxima and Sum # Maxima > average score exhibit sim-
ilar accuracies. This is easily explainable, as a docid-sorted
index typically has no trend on score distribution, so the
maxima are evenly distributed along the scores of a post-
ings list, and the number of maxima tends to be half of the
total number of entries.

For the MaxScore retrieval strategy, which does prune,
the baseline predictor of Sum # Postings is less accurate
than for Full. However, the best predictors are the baseline
predictor and, again, Sum # Maxima and Sum # Maxima
> average score, mostly because MaxScore cannot prune
many queries (as shown in Figure 4(a)). For Wand , the pre-
dicted vs. actual response time correlations of the baseline
predictor feature are again overall lower, as Wand prunes
more aggressively than MaxScore (Figure 4(a) & (b)), and
is also the only pruning strategy able to skip whole portions
of postings lists. For these reasons, the observed lower cor-
relation with number of postings is expected. Instead, the
Sum # Maxima > avg and Sum # Maxima features are
promising, but not significantly better than the baseline.

Finally, we note that no feature based on IDF appeared
in the top prediction features in Table 3. This suggests that
query efficiency is a different task from query performance
(effectiveness) prediction, with different statistics required.

Overall, we conclude that the Sum # Postings is a good
single predictor for Full and MaxScore , exhibiting errors
of less than 0.25 seconds. For Wand , some other efficiency
predictor features show promise, but do not significantly im-
prove over the baseline. We consider that the proposed effi-
ciency features are ‘weak features’. Hence, in the next sec-
tion, we show how significantly improved efficiency predic-
tion can be achieved by combining multiple prediction fea-
tures within the regression, instead of only a single feature.

6.4 Results: Combined Predictors

Table 4 reports the correlations and RMSEs between pre-
dicted and actual response times observed on the test query
set when combining all efficiency prediction features within a
linear regression®. On analysing the results, we find that for
the Full retrieval strategy, the learned model possibly over-
fits, and cannot outperform the baseline Sum # Postings
feature. Similarly, the fact that MaxScore cannot prune
many queries (see Figure 4(a)) ensures that the baseline fea-
ture is the most appropriate. However, for Wand , the re-
gression model combining all 42 features is significantly more
accurate at predicting response times than the baseline for
all query lengths, and markedly improves the RMSEs values
(approx 25%-30% reduction, with a prediction error of less
than 0.2 seconds observed for queries of length ! 3).

Overall, we conclude that the proposed framework for ef-
ficiency prediction is accurate for predicting the response
times of the state-of-the-art Wand strategy, where the total
number of postings is not a sufficiently good predictor. For
Full and MaxScore , no or little pruning occurs, and hence
the total number of postings is sufficient.

SPredicted negative times are set to 0.



Features Query Length
. 2 3 T 5
Agg.  Term Statistic r RMSE | r RMSE | r RMSE | r RMSE
Full
Sum  # Postings 0.920 0.274 | 0.945 0.261 | 0.957 0.258 | 0.963 0.256
Max  # Maxima 0.879% 0.320 | 0.889% 0.361 | 0.806% 0.392 | 0.002%  0.407
Max # Maxima > avg | 0.870%  0.340 | 0.884*  0.369 | 0.892*  0.400 | 0.899*  0.413
Max # Postings 0.879%  0.328 | 0.890% 0.361 | 0.896% 0.392 | 0.902%  0.408
Sum # Maxima 0.919 0.274 | 0.945 0.261 | 0.957 0.258 | 0.963 0.256
Sum  # Maxima > avg | 0.914 0283 | 0.941 0270 | 0.954 0.268 | 0.960  0.266
AXSCORE
Sum  # Postings 0.871 0.279 | 0.8901 0.292 | 0.910 0.301 | 0.922 0.304
Max  # Maxima 0837%F 0.310 | 0.835% 0352 | 0.858% 0.372 | 0.870%  0.387
Max # Maxima > avg | 0.832% 0.314 | 0.833* 0.353 | 0.857* 0.373 | 0.871*  0.387
Max # Postings 0.837%  0.310 | 0.835% 0.352 | 0.858% 0.372 | 0.870%  0.388
Sum # Maxima 0.871 0.278 | 0.891 0.291 | 0.910 0.300 | 0.923 0.303
Sum  # Maxima > avg | 0.870 0.281 | 0.890 0.292 | 0.910 0.301 | 0.922 0.304
WAND

Sum  # Postings 0812 0287 | 0.840 0253 | 0.857 0.249 | 0.870  0.249
Max  # Maxima 0.780% 0.300 | 0.777% 0.204 | 0.782%  0.301 | 0.793% _ 0.308
Max # Maxima > avg | 0.786% 0.305 | 0.782% 0.291 | 0.785%  0.299 | 0.797*  0.306
Max # Postings 0.778%  0.310 | 0.776%  0.204 | 0.781%  0.302 | 0.792%  0.309
Sum # Maxima 0814 0.285 | 0.841 0252 | 0.858 0.247 | 0.871  0.248
Sum  # Maxima > avg | 0.822 0.280 | 0.846 0.249 | 0.861 0.245 | 0.874 0.246

Table 3: Pearson correlations and RMSE values (in seconds) on the test query set of the best single predictor
features for dilerent query lengths and retrieval strategies. Signibcantly dilerent Pearson correlations from

Sum # Postings are denoted *.

Query Length
#* ) 3 1 5
Feat.
r RMSE r RMSE r RMSE r RMSE
Full
Sum # Post. 1 0.920 0.274 0.945 0.261 0.957 0.258 0.963 0.256
Combination 42 0.885* 0.323 0.926* 0.301 0.942* 0.299 0.949 0.299
MAXSCORE
Sum # Post. 1 0.871 0.279 0.891 0.292 0.910 0.301 0.922 0.304
Combination 42 0.841* 0.306 0.875 0.311 0.892 0.329 0.902 0.339
WAND
Sum # Post. 1 0.812 0.287 0.840 0.253 0.857 0.249 0.870 0.249
Combination 42 0.912* 0.200 | 0.922* 0.181 | 0.921* 0.188 | 0.928* 0.189

Table 4: Pearson correlations and RMSE values (in seconds) on the test set queries when using all prediction
features. Signibcantly dilerent Pearson correlations from Sum # Postings are denoted *.

7. APPLYING QUERY EFFICIENCY PRE-
DICTION TO QUERY SCHEDULING

While in general the main retrieval efficiency measure is
the average time required to process the queries (average
response time), when a stream of queries is received by a
search engine, it might not be possible to start processing a
new query as soon as it arrives. Instead, when the system is
busy processing a query, subsequent queries are queued [7].
Therefore, the actual time delay experienced by a user while
waiting for search results (completion time) is given by the
execution time (response time) of the query, plus the time
the query spent waiting to be processed (waiting time).

Classically, queued queries have been processed in a FIFO
manner (i.e. first-come first-served) [7]. However, this only
results in minimising queueing time if each query has an
equal response time [20]. Instead, we propose that queues
of queries can be scheduled to execute out of arrival order,
by deploying specific scheduling algorithms [20]. In this way,
for instance, quick queries may be scheduled between longer
queries, to reduce the mean time delay experienced by the
user population of the search engine.

As mentioned in Section 2, an oft-deployed approach to
increase query throughput and reduce the average comple-

tion time is to replicate the number of query servers avail-
able for a given index shard. Hence, a new query arriving
at the broker is sent to a query server that is idle, or least
loaded. However, as the number of CPU cores in each query
server is finite, it is natural that queries are queued until
the query server is able to process them. In this manner,
we propose two possible architectures for such a replicated
retrieval system, as illustrated in Figure 6 for a single in-
dex shard. In the broker queue architecture, newly arrived
queries are queued by the broker, before routing to the next
available query server. In contrast, in the queue per server
architecture, each new query is routed directly to a query
server, which queues that query until it can be processed. In
both architectures, there are potentials to improve the over-
all efficiency by the appropriate online scheduling of queries.

For instance, in the broker queue architecture, the queue
can be sorted to balance throughput. For queue per server,
a query can be sent to the query server with the lowest
loading, for instance by measuring the number of queries
it has queued to process. However, as shown in Section 5,
different queries can take different amounts of time to com-
plete, dependent on the nature of the pruning experienced
by the query. As a result, a newly arrived query can be
scheduled onto a query server that already has a queue of
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expensive queries, rather than another server which has a
queue of inexpensive queries, resulting in poor load balanc-
ing across query servers. Instead, in this section, we show
how query efficiency predictors can be used to improve the
online scheduling of queries to distribute load across query
servers, and result in improved mean completion time.

In the following we test different methods of online schedul-
ing of queries across replicated query servers, both with a
single broker queue and with a queue per server. For the
former, we consider three scheduling methods [20]:

First Come First Served (FCFS): Incoming queries are
kept sorted in arrival order, and as soon as a server is idle,
it starts processing the first query in the queue [7]. FCFS
does not need any information about the execution time of
a query, and hence forms our baseline.

Actual Shortest Job First (ASJF): Incoming queries
are kept sorted in increasing order of expected service time,
and scheduled to the servers in that order. ASJF assumes
knowledge of the actual execution time a query will take, and
hence represents scheduling with perfect knowledge, forming
an oracle. ASJF is the optimal schedule to reduce the mean
queueing time experiences by each query [20].

Predicted Shortest Job First (PSJF): As ASJF, but
uses predicted execution times provided by our framework
from Section 6 instead of actual times.

When the queue per server architecture is used, an incom-
ing query is dispatched by the broker to a server as soon as
it arrives, and then queued by that server until retrieval can
commence. In this scenario, we test three methods for dis-
patching queries to server:

Queue Length  (QL): Queries are scheduled onto the query
server with the shortest queue length. This represents our
baseline.

Actual Execution (AE): Queries are scheduled onto the
query server with the smallest queue duration time, assum-
ing that the actual execution times of the queued queries
are known a-priori. This represents scheduling with perfect
knowledge, forming an oracle.

Predicted Execution (PE): Queries are scheduled onto
the query server with the smallest queue duration time, us-
ing predicted execution times provided by our framework
from Section 6.

Comparing the two architectures, there are likely advan-
tages in deploying the queue per server architecture, as this
does not require the broker to know the predicted response
time of a query, which uses statistics likely to be stored with
the index. However, scheduling quality might be degraded
by the use of multiple queues [25].

7.1 Simulation Experimental Setup

In the following, we perform simulation experiments to
address the following research questions:
3. Can scheduling improve the average completion time of
queries in a replicated query servers setting?
4. Can query efficiency prediction improve over Sum # Post-
ings when scheduling queries for Wand 7
5. Which replicated retrieval system architecture, broker
queue (Section 7.2) or queue per server (Section 7.3), pro-
duces lower average completion times?

We devise an experiment that simulates the execution of
query processing across multiple query servers, using the
actual query arrival times of the 8,278 test queries from the
MSN query log for various pruning strategies. This query set
includes the original test set of 5,000 multi-term queries used
in previous section, as well as single term queries from the
same time period (approximately the 2nd 2.5 hours of May
1st 2006). The arrival rate of new queries varies between 20
and 100 per minute.

Predicted and actual query response times are as obtained
from the experiments in Section 6 - i.e. for Full and Max-
Score , we use the Sum # postings, while, for Wand , to
show the benefit of our efficiency prediction framework, we
compare Sum # postings and the 42 feature regression model.
Hence, in the following experiments, the suffix (1) denotes
the Sum # postings predictor, while (42) denotes the 42
feature regression model. For single term queries, no prun-
ing is possible, and hence we use # postings to predict the
response time of all retrieval strategies.

Simulation has previously been shown to accurately model
distributed and replicated search engine architectures [7].
Our simulation experiments do not model the cost of com-
puting an efficiency prediction. Indeed, as all features for
each query term are in memory, the floating point opera-
tions to compute the predicted response time require very
few CPU cycles. We also fix the number of cores per server
to 1, such that contention for memory bandwidth within
query servers need not be modelled. However, the number
of replicated query servers is varied in the range 1..4.

Finally, following scheduling practises [20], we measure the
scheduling success by comparing average wait times (AWTSs)
and average completion times (ACTs), as measured from the
queries’ arrival times.

7.2 Results: Broker Queue

Table 5 reports the ACTs and AWTs in seconds, for differ-
ent scheduling strategies, pruning strategies and number of
servers in the broker queue architecture. The optimal results
are obtained when every query is served as soon as it arrives,
i.e. they represent the average response times, with no wait-
ing time. Other results are reported for other scheduling
algorithms. In addition to executing queries in their arrival
order (FCFS), three variants of shortest job first are de-
ployed: ASJF represents the best case scheduling, when the
broker’s queue is sorted by the known response time of each
query; in PSJF(1), queries are scheduled by their total num-



Table 5: Average completion time (ACT) and av-
erage waiting time (AWT) for dilerent scheduling
strategies, pruning strategies and number of servers,
for broker queue architecture.

ber of postings; in PSJF(42), queries are scheduled by their
predicted response time using all 42 prediction features.

On analysing Table 5, we firstly note that, as expected,
MaxScore and Wand improve over the efficiency of the ex-
haustive Full. Next, on analysing the scheduling strategies,
we find that FCFS performs very poorly when applied to a
single server. This is a well-known problem of FCFS [20]: a
query requiring a long time to process will delay all subse-
quent queries that, even if they require a short time to pro-
cess, must wait for the long query to complete. Nevertheless,
AWTs are decreased when dynamic pruning strategies are
used: for example, Wand gives a benefit of 97% to the aver-
age completion time of FCFS on a single server (309.514 to
10.748 seconds). Moreover, dynamic pruning also helps in
reducing the average completion time with FCFS scheduling
when multiple servers are used.

Next, we compare the scheduling FCFS and ASJF, and
observe that in all cases, ASJF results in markedly reduced
ACTs and AWTs. This in line with our expectations from
the scheduling literature [20]. The margin of improvement
decreases as more servers are added, as there is less con-
tention for query servers, and hence scheduling has less ef-
fect. Indeed, the query load within this query set is ad-
equately handled by four query servers, as the results are
very close to the optimal completion time, i.e. no queries
are queued and average waiting times are close to 0. Never-
theless, the overall reduced AWTs and ACTs exhibited by
ASJF allow us to conclude that there is the potential for
scheduling to improve the efficiency of both non-replicated
and replicated retrieval settings.

Finally, we examine the use of predicted execution times
instead of actual ones (i.e. PSJF). In particular, as expected,
for Full and MaxScore , the performance of PSJF(1) is al-
most the same as ASJF scheduling. However, PSJF(1) —i.e.
Sum # Postings — does not produce accurate estimations of
response time for the considerably more efficient Wand . In-
deed, using the learned model with all 42 prediction features
Wand results in ACT and AWTSs that are much closer to the
best case ASJF performances — e.g., for Wand , PSJF(42) re-
sults in a 70% reduction in ACT for a single query server
compared to FCFS (from 10.748 seconds to 3.230 seconds).

Scheduling | Full [ MAXSCORE WAND Scheduling Full MAXSCORE WAND
Algorithm | ACT [ AWT [ ACT [ AWT | ACT [ AWT Algorithm [ACT | AWT | ACT | AWT | ACT | AWT
_ +00 query servers +00 query servers
Optimal [ 0.691 ] loqueiy‘;'jfjer[ 0 [od1] © Optimal 0691 0 [0573] 0 [0401] O
FCFS 309.514 | 308.822 [ 119.603 | 119.030 | 10.748 [ 10.347 2 query servers
ASJF 68.379 | 67.688 | 24.540 | 23.967 | 2.674 | 2.274 QL 2.186 | 1.495 | 1.150 | 0.577 | 0.593 [ 0.192
PSJF(1) 71.460 | 70.769 | 26.596 | 26.023 | 5.314 | 4.913 AE 2.054 | 1.363 | 1.047 | 0.474 | 0.540 | 0.139
PSJF(42) - - - - 3.230 | 2.829 PE(1) 2.055 | 1.363 | 1.058 | 0.485 | 0.593 | 0.192
FCFS 2.005 123?Zery 1012 [ 0.3 [ 052 [ 015 PE(42) - . . - 0-551 | 0.150
' s ’ ’ ’ ' 3 query servers
ASJF 1.224 0.533 0.822 0.249 | 0.488 | 0.087
PSJF(1) 1.226 | 0535 | 0.829 | 0256 | 0516 | 0.115 QL 0.935 1 0.244 | 0.715 | 0.142 | 0.461 | 0.060
PSJF(42) _ _ _ _ 0.492 0.091 AE 0.845 | 0.158 | 0.654 | 0.081 | 0.430 | 0.029
3 query servers PE(1) 0.853 | 0.161 | 0.656 | 0.083 | 0.458 | 0.057
FCFS 0.821 0.130 0.641 0.068 [ 0.424 | 0.023 PE(42) - - - - 0.433 | 0.032
ASJF 0.776 0.085 0.621 0.047 | 0.419 | 0.018 4 query servers
PSJF(1) 0.777 0.086 0.621 0.048 | 0.423 | 0.022 Qr 0772 T 0.082 1 0.622 1 0.046 T 0422 T 0021
PSJF(42) = 4'query —orvers 0.420 | 0.019 AE 0.733 | 0.042 | 0.594 | 0.021 | 0.408 | 0.007
FCFS 0723 [ 0031 | 0588 | 0015 | 0406 | 0.005 PE(1) 0.734 | 0.043 | 0.596 | 0.022 | 0.419 | 0.018
ASJF 0713 | 0.022 | 058 | 0012 | 0405 | 0.004 PE(42) - - - - 0.409 | 0.008
PSJF(1) 0.714 0.022 0.586 0.013 | 0.406 | 0.005
PSJF(42) - - - - 0.405 | 0.004

Table 6: Average completion time (ACT) and av-
erage waiting time (AWT) for dilerent scheduling
strategies, pruning strategies and number of servers,
for queue per server architecture.

Hence, these results attest the usefulness of the proposed
query efficiency prediction framework, and its benefits for
the online scheduling of replicated query servers.

7.3 Results: Queue per Server

We now study scheduling in the queue per server archi-
tecture. In particular, Table 6 reports the ACTs and AWTs
in this architecture®. Three different scheduling methods
are tested for measuring the outstanding queue for a query
server: Queue Length (QL) — baseline, Actual Execution
(AE) — best-case scheduling — and Predicted Execution (PE),
which uses predicted response times from the query effi-
ciency prediction framework. Two variants of PE are em-
ployed, one using total number of postings alone (1) and one
using all 42 prediction features (42). A particular advantage
of PE in the queue per server architecture is that the bro-
ker does not require the predicted response time of a query,
but instead only the predicted response times of the queries
already queued on that server.

From Table 6 we draw several observations. Firstly, choos-
ing the query server for the next query using QL is worse
than AE, across different numbers of servers. Moreover, PE
produces results that are only slightly worse than the best-
case AE, and in all cases better than QL. Indeed, with more
than three servers, AWTSs reduce towards 0 across all prun-
ing strategies. As expected, the PE(1) results are good for
Full and MaxScore , however for Wand , PE(42) results in
ACTs and AWTs that are much closer to AE than PE(1).
Indeed, for two query servers, PE(42) results in a 22% re-
duction in AWT for Wand compared to QL (from 0.192 sec-
onds to 0.150 seconds), and a 7% reduction in ACT (0.593 to
0.551 seconds). Once again, this shows the accuracy of the
query efficiency framework at encapsulating Wand ’s prun-
ing behaviour.

Lastly, we compare Tables 5 & 6 to address our final
research question on the two replication architectures. In
general, response times are slightly lower using the broker
queue architecture. For instance, the ACT of Wand with
three query servers using PSJF(42) is 0.420, while PE(42) is
slightly higher at 0.433. This is explainable in that the bro-

®We omit the results for the single server scenario, as these
results are equivalent to FCFS in Table 5.



ker queue can be appropriately sorted by expected execution
length, while in queue per server, the scheduling of queries
is less refined [25]. However, we recognise that queue per
server does not require the broker to be able to predict ex-
ecution times. This is likely beneficial for fully distributed
retrieval settings, when the index is sharded across multi-
ple query servers and multiple servers serving each shard,
where it is unlikely that the broker can know the predicted
response times of all shards.

Overall, we conclude that the online scheduling of queries
to query servers can improve the average wait and comple-
tion times of queries - indeed, PSJF improved over FCFS
for the broker queue architectures, and PE improved over
QL for the queue per server architecture. Moreover, such
scheduling is made possible by our proposed novel frame-
work for query efficiency prediction, particularly for the most
efficient Wand dynamic pruning retrieval strategy.

8. CONCLUSIONS

Dynamic pruning techniques can improve the efficiency
of queries, but result in different queries taking different
amounts of time. We empirically investigated the efficiency

of different queries for in-memory inverted indices, and showed

how and why the amount of pruning that could be applied
for a query can vary. Next, we proposed a framework for pre-
dicting the efficiency of a query, which uses linear regression
to learn a combination of aggregates of term statistics. Ex-
periments for 10,000 queries retrieving from an in-memory
index of the TREC ClueWeb09 collection (50 million docu-
ments) showed that our learned predictors encapsulating 42
features could successfully predict the response time of the
state-of-the-art Wand dynamic pruning retrieval strategy.

Moreover, we proposed the online scheduling of queries
across replicated query servers, driven by predicted response
times of queries. Two different scheduling architectures were
proposed, differing in the location of the queueing. Simula-
tion experiments showed not only the advantages of schedul-
ing, but also the benefit of more accurate predicted response
times within the scheduling algorithms.

We believe that there are many applications for the pro-
posed query efficiency framework. For instance, we will in-
vestigate the application of query efficiency predictors for
query routing across multi-shard indices. The efficiency pre-
dictors may also be used for controlling the efficiency/eff-
ectiveness tradeoff (e.g. achieved by diluting the top K safe-
ness requirement or reducing the term upper bounds [5]).
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